تقویت کننده
تقویت‌کننده

آمپلی فایر یا تقویت کننده های الکترونیکی در موسیقی برای تقویت صدای سازهای پیکاپ داری مانند گیتار الکتریک، گیتار باس، ویولون و ... استفاده می شود.






عملکرد دستگاه

امپلی فایرها در به طور عمده دارای دو مدار الکتریکی به نام دریافت سیگنال صدا (Pre Amp) و تقویت کنندهٔ صدا (Power Amp) هستند. از مهمترین قطعاتی که در کیفیت صدای یک امپ بسیار مهم است وجود یک لامپ خلا می‌باشد. در گذشته در تمامی آمپلی فایرها از لامپ خلا استفاده می شد اما با گذشت زمان و روی کار آمدن ترانزیستورها، جایگزین مناسبی برای لامپ‌های خلأ به میدان آمد که از لحاظ هزینه بسیار کمتر از لامپ‌های خلأ بود. اما صدای تولید شده از خازن‌ها هیچگاه کیفیت صدای تولید شده توسط لامپ‌های خلأ را نداشت و به همین دلیل در بسیاری از موارد حرفه‌ای از همان لامپ‌های خلأ قدیمی استفاده می‌شود.





بلندگوی لسلی
بلندگوی لسلی ( بلندگوی گردان ) (به انگلیسی: Leslie Speaker) ساختاریست تشکیل شده از تقویت کننده/بلندگو که برای ایجاد تغییر در صدا با استفاده از اثر داپلر توسط دانلد لسلی اختراع شده.





تقویت‌کننده الکترونیکی

تقویت کننده الکترونیکی وسیله‌ای برای افزایش توان سیگنال می‌باشد. تقویت کننده شکل سیگنال ورودی را حفظ کرده اما دامنه بزرگتر آن را بزرگتر می‌کند.

از تقویت کننده ها برای تقویت صدای سازهای مانند گیتار الکتریک، گیتار باس، ویولن برای تقویت انواع خروجی های صدا مانند دستگاه های پخش خانگی، دستگاه های پخش خودرو و برای تقویت صداهای ضبط شده در مسیر دستگاه های ضبط صدا در استودیو های صوتی استفاده می شود.





بلندگو

بلندگو به گونه‌ای دستگاه مبدل انرژی گفته می‌شود که انرژی الکتریکی را به صدا تبدیل می‌کند. واژه بلندگو ممکن است تنها به یک ترانسدیوسر (که به آن درایور گویند) و یا به سیستمی شامل چندین درایور و همچنین دیگر قطعات الکترونیکی اطلاق شود. بلندگو بخشی از هر سیستم صوتی است و معمولاً تفاوت کیفیت در سیستم‌های صوتی ناشی از این بخش است و بیشترین اعوجاج در صدا در این بخش صورت می‌گیرد.






تاریخچه

فیلیپ رئیس یک بلندگوی الکتریکی را در سال ۱۸۶۳ در تلفن خود نصب کرد که قادر بود صدایی واضح را مجددا تولید کند.





بلندگوی رایانه
بلندگوی رایانه (به انگلیسی: Computer speaker) دستگاهی از دسته سخت‌افزار رایانه است که وظیفه‌ی انتقال صوت به بیرون از رایانه را دارا می‌باشد؛ این دستگاه‌ها بیشتر دارای یک آمپلی‌فایر (تقویت‌کننده الکترونیکی) داخلی با قدرت کم هستند.ارتباط صوتی استاندارد این دستگاه‌ها با رایانه از طریق کابل ۳٫۵ میلی متری (حدود یک هشتم اینچ) که رابط تی‌آراس نام دارد و اغلب به رنگ سبز مغزپسته‌ای است برقرار می‌شود.





مانیتور استودیو

مانیتور استودیو نوعی از بلندگوها است که برای تولید برنامه‌های کاربردی مخصوص استودیو ضبط کاربرد دارد. فرق این بلندگوها با بلندگوهای معمولی در این است که صدای خارج‌شونده از این دستگاه‌ها فاقد هرگونه تغییر و بیس بوده و صرفاً هرآنچه که درآن وارد می‌شود را خارج می‌کند. در اغلب موارد برای تفکیک بهتر صداهای ورودی این قطعه نیازمند تقویت‌کننده الکترونیکی است.






صدا

صدا یا صوت از انواع انرژی است که از تحرک ذرات ماده بوجود می‌آیند به این گونه که یک ذره با حرکت (برخورد) خود به ذره‌ای دیگر ذرهٔ دیگر را به حرکت در می‌آورد و به همین ترتیب است که صوت نشر می‌یابد. صدا ارتعاشیست که توسط حس شنوایی انسان درک میشود. ما معمولاً اصواتی که در هوا حرکت میکنند را میشنویم ولی صدا میتواند در گاز، مایع و حتی جامدات نیز حرکت کند.صدا ص َ (ع اِ) ۞ معرب «سدا» است ۞ و آن آوازی باشد که در کوه و گنبد وامثال آن پیچد و باز همان شنیده شود و در عربی نیز همین معنی را دارد .

سرعت صوت در جامدات بدلیل تراکم زیاد مولکولها، بیشتر از مایعات و در مایعات نیز بیشتر از گازها است. صوت بر خلاف امواج دیگر مانند نور و گرما فقط در محیطی نشر می‌یابد که ماده وجود داشته باشد و این بدین معناست که اگر بر سطح ماه (که هوایی وجود ندارد) انفجاری روی دهد شما هیچ وقت صدای آنرا نمی‌شنوید. از واحد دسی‌بل نیز برای اندازه گیری شدت صوت استفاده می‌کنند. محدودهٔ شنوایی انسان بین ۲۰ تا ۲۰۰۰۰ هرتز می‌باشد.






خصوصیات صدا

ویژگیهای صدا عبارتند از بسامد، طول موج، دامنه و سرعت
بسامد و طول موج

بسامد تعداد تغییرات فشار هوا در هر ثانیه در یک نقطه ی ثابت است که موج صدا در حال گذر از آن میباشد. یک چرخه ی نوسانی ساده در یک ثانیه برابر با یک هرتز است. طول موج برابر فاصله ی بین دو قله ی متوالی بوده که موج در مدت زمان یک چرخه ی نوسانی آنرا طی میکند.






سرعت صوت

سرعت انتشار صوت بستگی به نوع، دما و فشار محیطی که صوت در آن منتشر میشود دارد. در شرایط طبیعی از آنجایی که هوا تقریباً بصورت یک گاز کامل رفتار میکند سرعت صوت وابسته به فشار هوا نخواهد بود. در هوای خشک در دمای 20 درجه ی سانتیگراد سرعت صوت حدوداً 343 متر در ثانیه یعنی حدوداً یک متر در هر 3 هزارم ثانیه است. سرعت صوت همچنین وابسته به بسامد و طول موج است. بنابراین یک صوت 343 هرتزی طول موج یک متر خواهد داشت.

واژهٔ «صدا»، معرب (عربی‌شدهٔ) «سدا»ی پارسی است.






سرعت صوت

سرعت صوت (به انگلیسی: Speed of sound)، فاصله‌ای‌ست که یک موج صوتی در مدت زمان یک ثانیه در یک سیال می‌پیماید. سرعت صوت مشخص می‌کند که این موج در بازهٔ مشخصی از زمان چه مسافتی را طی می‌کند. در هوای خشک و در دمای ۲۰ درجه سانتی‌گراد (۶۸ درجه فارنهایت)، سرعت صوت ۳۴۳٫۲ متر بر ثانیه (۱۱۲۶ فوت بر ثانیه)، ۱۲۳۶ کیلومتر بر ساعت (۷۶۸ مایل بر ساعت) یا به طور تقریبی، یک کیلومتر در سه ثانیه و یا تقریباً یک مایل در پنج ثانیه است. در دینامیک سیالات، سرعت صوت در یک سیال (گاز یا مایع)، به عنوان یک ابزار حساب‌گری نسبی خود سرعت استفاده می‌شود. سرعت یک شیئ (فاصله بر زمان) تقسیم بر سرعت صوت در سیال به عنوان عدد ماخ شناخته می‌شود. اشیایئ که با سرعت بیشتر از یک ماخ حرکت می‌کنند، در سرعت‌های سوپرسونیک حرکت می‌کنند.

سرعت صوت در یک گاز ایده‌آل، مستقل از فرکانس است وتابعی از ریشهٔ دوم دمای مطلق است ولی به فشار یا چگالی آن گاز وابسته نیست. برای گازهای مختلف، سرعت صوت به طور معکوس به ریشه دوم میانگین جرم مولکولی گاز بستگی دارد.

در گفتگوهای مرسوم روزمره، منظور از سرعت صوت، سرعت موج صوتی در سیالِ هوا است. با این حال، سرعت صوت از یک ماده به مادهٔ دیگر متفاوت است. صوت در مایعات و جامدات نامتخلخل سریع‌تر از هوا، حرکت می‌کند. می‌توان گفت سرعت صوت در آب حدود ۴٫۳ برابر (۱۴۸۴ متر بر ثانیه)، و در آهن تقریباً ۱۵ برابر (۵۱۲۰ متر بر ثانیه) سرعت آن در هوای ۲۰ درجه سانتی‌گراد است.

سرعت صوت در فلزات و جامدات، مایعات، درون محیط‌هایی که فشردگی هوای آن‌ها نسبت به محیط آزاد بیشتر است، مناطق سرد و مرطوب و پست تر از دریا، مناطق سرد و مرطوب در کنار دریا، مناطق سرد و مرطوب بالاتر از دریا، مناطق مرطوب بالاتر از دریا نسبت به هوای آزاد در حالت عادی به ترتیب ذکر شده بیشتر است. صوت از محیط‌هایی که مادی نیستند (در آنجا ماده وجود ندارد) نمی‌تواند عبور کند.






صدای انسان

صدای انسان متشکل از صوتی است که با استفاده از تارهای صوتی توسط انسان ساخته شده و برای صحبت کردن ، آواز خواندن ، خندیدن ، گریه کردن ، فریاد زدن و ... مورد استفاده قرار می گیرد.

تارهای صوتی فقط بخشی از صدای اولیه ی انسان را می سازند و به طور کلی مکانیزم تولید صدای انسان را می توان به سه بخش ریه ، تارهای صوتی موجود در حنجره و مفاصل تقسیم بندی کرد.

ریه ( پمپ ) باید جریان هوا و فشار هوای کافی را برای ارتعاش تارهای صوتی تولید کند تارهای صوتی یک دریچه ی ارتعاشی هستند که جریان هوا را از ریه صادر می کند تا پالس های قابل شنیدنی را به صورت یک منبع صدا در حنجره تولید نمایند.عضلات حنجره ، طول و تنش تارهای صوتی را برای ایجاد تن صدایی بسیار خوب تنظیم می کنند .

مفاصل ( بخش هایی از دستگاه صوتی در قسمت فوقانی حنجره شامل زبان ، کام ، گونه ، لب ها و غیره ) ، صدای نشأت گرفته از حنجره را واضح و شفاف و به نوعی فیلتر می کنند و تا حدی می توانند جریان هوای حنجره را به عنوان یک منبع صدا تقویت یا تضعیف نمایند .

تارهای صوتی در ترکیب با مفاصل قادر به تولید آرایه های بسیار پیچیده ای از صدا هستند . تن یا لحن صدا می تواند بیانگر احساسات مختلف انسان باشد : مانند خشم ، تعجب یا شادی .

خواننده ها از صدای انسان به عنوان ابزاری برای ایجاد موسیقی استفاده می کنند .






مهندسی صوت
مهندسی صوت (به انگلیسی: Acoustical engineering) قسمتی از علم صوت است که با ضبط و تکثیر صوت توسط وسایل الکتریکی و مکانیکی سروکار دارد. مهندسی صوت از رشته‌های مختلفی بهره می‌برد از جمله: مهندسی برق، صوت‌شناسی (acoustics)، روانشناسی صوتی (psychoacoustics) و موسیقی.






نوروصوت‌شناسی

نوروصوت‌شناسی یا آکوستو-اپتیک (Acousto-optics) شاخه‌ای از فیزیک است که به بررسی برهم کنش امواج نوری و امواج صوتی و به خصوص پراش لیزر به وسیلهٔ امواج صوتی می‌پردازد.

اپتیک تاریخچه‌ای بسیار طولانی دارد: از زمان یونانیان باستان تا عصر حاضر درست مانند اپتیک، آکوستیک نیز تاریخچه‌ای طولانی دارد که به زمان یونانیان باستان باز می‌گردد. در مقابل آکوستو اپتیک علمی بسیار نوین با تاریخچه‌ای کوتاه‌است. این زمینه از علم با پیش بینی بریلوئن در مورد پراش نور بوسیلهٔ امواج صوتی منتشر شده در ماده در سال ۱۹۲۲ میالادی آغاز شد. این پیش بینی ده سال بعد توسط دبای و سیرز و همچنین لوکاس و بیکارد آزمایش و تایید شد.

مورد خاص پراش مرتبهٔ اول تحت یک زاویهٔ فرود خاص (که بریلوئن هم پیش بینی آن را کرده بود) برای اولین بار توسط ریتوف دیده شد. رامان و نث در سال ۱۹۳۷ یک مدل عمومی تر را طراحی کردند که پراش‌های مرتبهٔ بالاتر را آشکار کند. این مدل بعدها در سال ۱۹۵۶ توسط فریزو توسعه پیدا کرد. مدل وی قابل تنظیم بر مرتبهٔ پراشی مشخص بود.

اساس نوروصوت‌شناسی، تغییر ضریب شکست به خاطر حضور موج صوتی در ماده‌است. موج صوتی یک شبکهٔ ضریب شکست در ماده به وجود می‌آورد و این شبکه توسط موج نوری "دیده" می‌شود. تغییر ضریب شکست که به خاطر نوسان فشار ایجاد شده، به وسیله آثار شکست نور، بازتاب نور، تداخل و پراش قابل شناسایی است.






آکوستو اپتیک

آکوستو اپتیک شاخه ای از فیزیک است که به بررسی برهم کنش امواج نوری و امواج صوتی و به خصوص پراش لیزر به وسیله ی امواج صوتی می پردازد.







مقدمه

اپتیک تاریخچه ای بسیار طولانی دارد: از زمان یونانیان باستان تا عصر حاضر درست مانند اپتیک، آکوستیک نیز تاریخچه ای طولانی دارد که به زمان یونانیان باستان باز می گردد. در مقابل آکوستو اپتیک علمی بسیار نوین با تاریخچه ای کوتاه است. این زمینه از علم با پیش بینیبریلوئندر مورد پراش نور بوسیله ی امواج صوتی منتشر شده در ماده در سال 1922 میالادی آغاز شد. این پیش بینی ده سال بعد توسط دبای و سیرز و همچنین لوکاس و بیکارد آزمایش و تایید شد.

مورد خاص پراش مرتبه ی اول تحت یک زاویه ی فرود خاص (که بریلوئن هم پیش بینی آن را کرده بود) برای اولین بار توسط ریتوف دیده شد. رامان و نث در سال 1937 یک مدل عمومی تر را طراحی کردند که پراش های مرتبه ی بالاتر را آشکار کند. این مدل بعد ها در سال 1956 توسط فریزو توسعه پیدا کرد. مدل وی قابل تنظیم بر مرتبه ی پراشی مشخص بود.

اساس آکوستو اپتیک، تغییر ضریب شکست به خاطر حضور موج صوتی در ماده است. موج صوتی یک شبکه ی ضریب شکست در ماده به وجود می آورد و این شبکه توسط موج نوری "دیده" می شود. تغییر ضریب شکست که به خاطر نوسان فشار ایجاد شده، به وسیله آثار شکست نور، بازتاب نور، تداخل و پراش قابل شناسایی است.






ابزارهای الکترو اپتیکی

ابزار های آکوستو اپتیکی شامل سه گروه زیر هستند:

1- مدولاتور الکترو اپتیکی

با تغییر پارامترهای موج صوتی مانند دامنه، فاز، فرکانس، و قطبش می توان خواص موج نوری را مدوله کرد. برهمکنش نور و صوت همچنین امکان مدوله کردن زمانی و فضایی موج نوری را فراهم می آورد.

یک راه ساده برای مدوله کردن پرتوی اپتیکی عبور نور از محیطی است که در آن موج صوتی به طور متناوب روشن و خاموش شود. وقتی صوت خاموش باشد زاویه ی پراش صفر و نور بی تغییر است. با روشن شدن صوت پراش رخ می دهد و شدت صوت در زوایای پراش افزایش ی یابد. با ثابت نگاه داشتن فرکانس صوتی و تغییر در توان مولد صوت می توان این ابزار را به یک مدولاتور آکوستواپتیکی تبدیل نمود. در طراحی مدولاتور باید به نحوی عمل کرد که ماکزیمم شدت نور در پرتوی پراشیده رخ بدهد. مدت زمانی که طول می کشد صوت از ماده عبور کند نیز محدودیتی بر سرعت سوییچ کردن تحمیل می کند. برای همین پرتوی نوری را تا حد ممکن باریک می کنند. باریک ترین پرتوی نوری ممکن را حد پهنای باند می نامند.

2- فیلتر های الکترو اپتیکی

رابطه ی 4 ارتباطی را میان طول موج صوتی و طول موج نوری نشان می دهد. در واقع پرتوی نوری تابیده شده، اگر دارای تعداد زیادی طول موج باشد فقط در طول موج های خاصی پراکنده می شود. مابقی طول موج ها فیلتر خواهند شد.

3- منحرف کننده های الکترو اپتیکی

با ایجاد یک تغییر در فرکانس صوت می توان تغییر زاویه ای در پرتوی نوری ایجاد کرد.





پژواک

پژواک (اکو)، بازگشت صدا از دیوار یا سایر اشیاست. صدا با سرعتی مشخّص و ثابت (نزدیک به ۳۴۴ متر بر ثانیه) حرکت می‌کند؛ بنابراین می‌توانیم با استفاده از پژواک، فاصلهٔ برخی از اشیا را محاسبه کنیم. دستگاه عمق‌سنج کشتی، برای محاسبهٔ عمق دریا از پژواک بهره می‌گیرد.

پژواک، خفّاش را قادر می‌سازد تا در تاریکی پرواز کند. رادار نیز از خاصیّت پژواک (وبا استفاده از امواج رادیویی) در کشف هدف بهره می‌گیرد.





فرامواد

متامتریال یا فرامواد به ماده مرکبی گفته می‌شود که دارای خواص نامتعارف الکترومغناطیس در ساختار وجودی خود است. آنچه این مواد را غیر معمول کرده است، خاصیت ضریب شکست منفی نور در آنها است، به این معنا که این مواد نور را در جهت مخالف مواد عادی منکسر می‌کنند. مواد الکترومغناطیس تشکیل دهنده آنها می‌تواند با دستکاری مختصر و دقیق ساختارشان «تنظیم» نیزبشود.

این مواد از ترکیب میله‌های ریز و مجموعه‌ای از حلقه‌های فلزی و مانند آنان ساخته شده است که برای اولین بار توسط دیوید اسمیت (David Smith استاد دانشگاه کالیفرنیا) ساخته شد. خواص نامتعارف این مواد سبب شده است از آنها در زمینه‌های مختلف استفاده شود از جمله آنها در مهندسی مایکروویو است که می‌توان به کاربرد در موجبرها، جبران پاشندگی، آنتن‌های هوشمند، لنزها و نمونه‌های فراوان دیگر استفاده کرد.
page13 - page14 - page15 - page16 - page17 - page19 - page20 - | 10:38 pm
آسانسور
آسانسور یا بالابر (به فرانسوی: ascenseur)، اتاقک متحرکی است که به وسیلهٔ آن از طبقه‌ای به طبقات بالا روند و یا از طبقهٔ بالا به پایین فرود آیند. به عبارت دیگر آسانسور تجهیزات حمل و نقل عمودی است که حرکت مردم و یا کالا بین طبقات را تسهیل می‌بخشد. آسانسور معمولاً به کمک موتور الکتریکی باعث حرکت عمودی کابین می‌شود.





پیشینه
از بررسی معماری ساختمان‌ها در گذشته می‌توان فهمید که در گذشته توان ساخت ساختمان‌های بلند وچود داشته‌است ولی شاید دلیل اینکه چرا این کار چندان رواج نداشته، وجود پله‌های بسیار بوده‌باشد. این مشکل همچنان پابرجا بود تا اینکه یک مکانیک آمریکایی به نام الیشا اوتیس ایمنی را در بالابر با به کارگیری چرخی ضامن‌دار که در صورت پاره‌شدن طناب، اندکی پس از سقوط بالابر را متوقف می‌کرد، فراهم کرد. این اختراع که در سال ۱۸۵۴ در نمایشگاهی در نیویورک پرده‌برداری شد، مقدمه‌ای برای کاربرد گستردهٔ بالابر بود.ناصرالدین شاه در سفرنامه فرنگ خویش در تعریف و توصیف آسانسور می‌گوید: رفتیم به مریض‌خانه سنت توماس ... از مرتبه‌های زیر اسبابی دارند که ناخوش را روی تخت گذاشته از توی اطاق زیر می‌کشند به مرتبه بالا می‌برند. بسیار تماشا داشت که ناخوش حرکت نکند.

در حال حاضر یکی از مشکلات ساختمانهای بزرگ کافی نبودن فضای در نظر گرفته شده برای آسانسور است. این امر یعنی پیش‌بینی و منظور نمودن فضای کافی با محاسبه تعداد ظرفیت و سرعت مناسب آسانسورها باتوجه به ارتفاع و جمعیت ساکن و کاربری ساختمان باید در ابتدای کار یعنی در زمان طراحی ساختمانها مد نظر قرار گیرد؛ وگرنه پس از اجرای ساختمان معمولاً افزایش فضای چاه آسانسور بسیار مشکل و در اکثر موارد غیر ممکن است.

آسانسور وسیله‌ای است الکترومکانیکی، در ابتدای اختراع آسانسور به شکل امروزی، بیشتر قطعات و لوازم آسانسورها مکانیکی و الکتریکی بود ولی با پیشرفت علوم در حوزه الکترونیک و نیمه‌هادیها و همچنین ورود حوزه علوم هوش مصنوعی به صنعت این وسیله نیز تکامل یافت و به عنوان یک وسیله کاملاً کاربردی با حوزه سطح دسترسی کاملاً گسترده در بین جوامع شهری قرار گرفت. در طراحی آسانسور علومی همچون مکانیک، برق و الکترونیک، معماری و صنایع مورد استفاده‌است. به همین علت هیچگاه یک متخصص به تنهایی قادر نخواهد بود که یک آسانسور را به تنهایی و با تکیه بر یکی از شاخه‌های علوم طراحی نماید. تا قبل از دهه ۱۹۹۰، عمده اموزش‌ها در این صنعت بصورت اموزش‌های محدود و استاد و شاگردی و صرفاً در کارخانه‌های بزرگ آسانسورسازی معمول بود. به همین سبب آموزش در این صنعت محدود و پنهان بود. برای اولین بار در سال ۱۹۹۵ میلادی اتحادیه آسانسور و پله برقی انگلستان (LEIA) با همکاری پروفسور یانوفسکی و پروفسور جینا بارنی اقدام به برگزاری دوره‌های آموزشی کوتاه مدت ماژولاری در انگلستان نمود که بیشتر مورد استفاده نصابان و متخصین این کشور بود. در ادامه این اتحادیه با همکاری دانشگاه نورث همپتون انگلستان دوره‌های دانشگاهی این رشته را در مقطع کاردانی و کارشناسی آغاز نمود. اولین دوره این مقاطع در سال ۱۹۹۸ در نورث همپتون انگلستان با هدایت جانات آدامز، برایان واتز، استفان کازمارسیزیک که از اعضای هیئت علمی دانشکده مهندسی مکانیک و علوم کاربردی بودند آغاز شد. از سال ۲۰۰۰ به بعد مقاطع کارشناسی ارشد و دکتری تخصصی تحت عنوان elevator and escalator engineering آغاز گشت.



انواع آسانسور
تمامی آسانسورها در داشتن خصوصیاتی مانند داشتن کابین، حرکت عمودی و توقف در سطوح مختلف با هم مشابه اند. اما از لحاظ نحوه اعمال نیروی محرکه به کابین متفاوت هستند که معمولاً به سه دسته آسانسورهای کششی، هیدرولیک و وینچی تقسیم می شوند(البته نوع فوق پیشرفته دیگری که مغناطیسی می باشد وجود دارد).


آسانسورهای کششی

نیروی محرکه در این نوع آسانسورها از یک موتورالکتریکی که معمولاً در بالای چاه آسانسور و در محلی به نام موتورخانه نصب گردیده، تامین می شود. بر روی فلکه این موتور تعدادی کابل فولادی (اصطلاحاً سیم بکسل) وجود دارد که از یک سمت به کابین آسانسور و از سمت دیگر به وزنه‌های آسانسور که درون قابی فلزی به نام قاب وزنه قرار دارند، متصل است. جنس این وزنه ها معمولاً از چدن یا بتن است. وزن این وزنه ها به اندازه وزن کابین به علاوه نصف ظرفیت کابین است. وزن هر نفر در محاسبات مربوط به آسانسور ۷۵ کیلوگرم است. دلیل قرار دادن وزنه در سیستم آسانسور کمک به بالا بردن آسانسور است در غیر اینصورت برای این کار باید موتورهای بسیار قوی با کیلووات بالا استفاده کرد. پس با این کار توان موتور مورد استفاده کاهش می‌یابد. طبیعی است که این وزنه در پایین آمدن آسانسور مزاحمت ایجاد می‌کند، اما چون هر جسم بدون دخالت به پایین سقوط می‌کند پس استفاده از وزنه مانعی بزرگی در حرکت آسانسور ایجاد نمی‌کند.

اساس کار این نوع آسانسورها بر اساس نیروی اصطکاک بین سیم بکسلها و فلکه موتور است. در داخل فریم وزنه به اندازه وزن کابین به اضافه نصف ظرفیت کابین وزنه وجود دارد. مثلاً اگر ظرفیت کابین ۹۰۰ کیلوگرم باشد(یعنی آسانسور نفربر ۱۲ نفره چون متوسط وزن هر نفر ۷۵ کیلو گرم است)باندازه ۴۵۰ کیلوگرم باضافه وزن کابین در کادر وزنه، وزنه وجود دارد. با کمک این وزنه، نیروی کشش لازم برای حرکت کابین کاهش می یابد چرا که در صورت رعایت کردن ظرفیت کابین، اختلاف وزن بین کادر وزنه و کابین تحت هر شرایطی از نصف ظرفیت کابین (در مثال قبل ۴۵۰ کیلوگرم) بیشتر نخواهد شد و در حرکت به سمت بالا یا پایین سیستم کشش آسانسور حداکثر برای جابه جایی جرمی به اندازه نصف ظرفیت کابین توان مصرف خواهد کرد.


آسانسورهای هیدرولیک

امروزه آسانسورهای هیدرولیکی نیز جای خود را در بین کاربران خانگی باز کرده‌اند. در اروپا بیش از 70 درصد از آسانسورهای زیر 5 طبقه هیدرولیک استفاده می شوند که از محاسن این نوع آسانسورها می‌توان به نرمی حرکت در استارت اولیه ؛ خرابی و استهلاک بسیار کم ؛ سهولت در عیب یابی و تعمیر ؛ ایجاد آسانسورهای زیبا و شیشه ای به دلیل حذف کادر وزنه و سیم بکسل ؛ احتیاج به سازه سبک ؛ عدم نیاز به موتورخانه در پشت بام ؛ ایجاد آسانسورهای باربر و سنگین با تناژ بالا و زیبایی بام خانه و همچنین تراز شدن دقیق آن در طبقات اشاره نمود اما از محدودیتهای استفاده از این نوع آسانسورها می‌توان به محدودیت در ارتفاع و کندی نسبی سرعت آنها و تنها قرارگیری در چاهک را اشاره کرد.( البته امروزه با استفاده از درایو و سیستم خنک کننده می توان به سرعت 1 متر به صورت معمول دست یافت. آسانسورهای هیدرولیک با پمپ فشار روغن و جک هیدرولیک کار می‌کنند.

در آسانسورهای هیدرولیک به خاطر اینکه کادر وزنه وجود ندارد و سیستم جک هیدرولیکی باید تمامی کابین و مسافران را جا به جا کند نیاز به موتورهای قوی تری هست. در این آسانسورها یک موتور سه فاز غوطه ور در روغن به همراه یک شیرالکتریکی مخصوص که اصطلاحاً پاور یونیت نامیده می شوند وظیفه تامین فشار روغن برای جک هیدرولیک را داراست. برای راه اندازی موتور به خاطر وجود موتورهای قوی تر در صورت استفاده از درایو یا سافت استارتر نیاز به هزینه بسیار بالاتری است پس لذا معمولاً برای شروع به کار موتور پمپ هیدرولیک از سیستم رایج ستاره - مثلث استفاده می شود. اما این موتور و فشار تنها در حرکت به سمت بالا مورد نیاز است و برای حرکت کابین به سمت پایین نیازی به روشن کردن موتور و مصرف توان نیست و تنها با بازکردن یک شیر و خالی کردن روغن جک کابین به آرامی به سمت پایین حرکت می کند. به عبارت دیگر یک سیستم هیدرولیک تنها در نیمی از مسافت حرکتی خود (تنها به سمت بالا) خود توان قابل ملاحظه ای مصرف می کند و در نیمه دیگر (تنها به سمت پایین) از نیروی گرانش استفاده می کند و این موضوع مصرف برق بالاتر آن نسبت به آسانسورهای دوسرعته را منتفی می کند.
آسانسورهای وینچی
نوعی آسانسور است كه با زنجیر یا طناب فولادی آویزان شده و نیروی رانش به طریقی به غیر از اصطكاك به آن وارد می شود. در این نوع آسانسورها قاب وزنه وجود ندارد.




نیروی محرکه

نیروی محرکه موتور آسانسورها سابقاً از موتورهای جریان مستقیم و توسط برق برق جریان مستقیم بود که برای این گونه موتورها از راه اندازهای گوناگونی همانند وارد - لئونارد استفاده می شد. با از دور خارج شدن موتورهای جریان مستقیم (DC) و معرفی موتورهای القایی سه فاز سالهاست که از موتورهای الکتریکی سه فاز القایی یا آسنکرون و اخیراً از موتورهای مغناطیس دائم (PM) و یا سنکرون استفاده می شود. در این موتورها از مکانیسم لنت ترمز استفاده می شود که با استفاده از نیروی اصطکاک مانع از حرکت ناخواسته موتور در حالت توقف می شود.

موتورهای القایی مورد استفاده در آسانسور به همراه گیربکس (جعبه دنده) و چرخ طیار به کار می روند. این موتورها در ابتدا دارای یک استاتور و تک سرعته بودند. این سیستم دارای اشکالاتی از جمله تکان شدید در هنگام کار بود. به خاطر همین تکان شدید بود که سرعت نهایی کابین در این موتورها کم بود. پس از مدتی موتورهای دوسرعته به بازار عرضه شدند. این موتورها دارای دو استاتور جدا گانه هستند که برای دو سرعت تند و کند به کار می روند. تعداد قطب استاتور دور کند معمولاً چهار برابر دور تند است که باعث می شود سرعت دور کند موتور یک چهارم دور تند باشد. در این نوع موتورها استارت کار موتور با دور تند است. دو عامل یعنی نیروی عکس العمل دنده ها در گیربکس و وجود چرخ طیار یا فلای ویل متصل به محور روتور موتور که دارای لختی دورانی است، مانع از تشدید تکان ها می شوند. برای توقف موتور با استفاده از یک مدار الکتریکی استاتور دور کند وارد مدار شده و دور تند از مدار خارج می شود. تغییر جهت حرکت نیز با جابه جایی دو فاز امکان پذیر است.

با معرفی سیستم های کنترل دور موتور القایی که متشکل از یک مبدل (یکسو ساز) و یک اینورتر هستند، استفاده از آنها در صنعت آسانسور به سرعت پیشرفت کرد. مزیت های این درایورها عبارتند از: نرمی حرکت و توقف، بهبود ضریب توان و کاهش بار رآکتیو شبکه برق، امکان استفاده از موتورهای تک استاتوره و حذف چرخ طیار یا فلایویل و در نتیجه کاهش برق مصرفی. این داریورها که انواع مخصوص استفاده در تابلو فرمان آسانسور آن نیز عرضه شده است، با تغییر فرکانس، نمودار حرکتی منظمی از شروع تا انتها و ایستادن آسانسور ایجاد می‌کند. در انواع پیشرفته تر این درایورها معمولاً امکان اتصال به یک تاکومتر یا انکودر نیز وجود دارد. این انکودر با اتصال به محور موتور امکان کنترل حلقه بسته را برای درایور فراهم می کند. وجود فیدبک برای یک سیستم کنترل بسیار حایز اهمیت است و باعث نرمی حرکت فوق العاده در آسانسور می شود.

در هنگام توقف آسانسور به علت بالا بودن اندازه حرکت(تکانه) کابین گاهی اوقات موتور به صورت ژنراتوری کار می کند و نیاز است که انرژی تولید شده توسط موتور در جایی تخلیه شود. در آسانسورهای دوسرعته و در سیستم های قدیمی این انرژی به شبکه برق برگشت داده می شد اما در درایور ها به علت وجود یکسوساز، این انرژی قابل برگشت نیست و باعث ازدیاد شدید ولتاژ بر روی بانک خازنی موجود در درایور شده و امکان آسیب زدن به آن وجود دارد. به همین منظور از یک مقاومت با توان بالا جهت تخلیه این انرژی استفاده می شود که به آن اصطلاحاً مقاومت ترمز گفته می شود.

اما با همه این ها موتورهای القایی با گیربکس معایبی نیز دارند. از جمله آنها پایین بودن بازده الکتریکی موتور (در حدود هشتاد درصد) و پایین بودن بازده مکانیکی گیربکس (در حدود 45 درصد) که موجب افزایش هزینه ها و استهلاک سیستم می شود. به همین خاطر موتورهای سنکرون با مغناطیس دائم کم کم در صنعت آسانسور پدیدار شدند که بازده نهایی آنها گاهی به 95 درصد هم می رسد. گشتاور بسیار بالاتر محور موتور باعث می شود که نیازی به استفاده از گیربکس در این موتورها نباشد.این موتورها دارای سیستم راه اندازی پیچیده‌ای هستند و لزوماً باید با استفاده از درایور و تاکومتر مورد استفاده قرار بگیرند.


تابلو فرمان آسانسور
آسانسورها در گذشته نه چندان دور بوسیله تابلوهای رله‌ای فرماندهی می‌شدند. فرمان از این تابلوها به موتورهای به اصطلاح دوسرعته می‌رسید. این موتورها بوسیله دو سیم پیچی که داشتند قادر بودند با دو سرعت حرکت تند و کند کنند. آسانسور با سرعت تند حرکت می‌کرد و برای ایستادن در سطح طبقات و کاهش تکان زمان ایستادن با تغییر به سرعت کند و طی مسیر کوتاهی با این سرعت می‌ایستاد.

ایراد بزرگ این سیستم تکان در سه زمان در حرکت است. تکان در هنگام راه افتادن, تغییر سرعت به دور کند و ایستادن است. ایراد دیگر مصرف بالای برق و کاهش ضریب توان در این سیستم بدلیل اتصال مستقیم برق سه‌فاز به موتور جهت حرکت است. ضمناً ابعاد این تابلوها بسیار بزرگ و سیستم آن بسیار پیچیده بود و رفع خرابی آن به زمان و مهارت بسیاری نیاز داشت.

ایراد دیگر این سیستم متغیر بودن سطح کابین با طبقات با بارهای متفاوت است چون بدلیل عدم اطلاع موتور از وزن کابین (پر یا خالی بودن آن) همیشه نیروی یکسانی به موتور وارد می‌شود. ایراد دیگر این سیستم آسیب هایی است که در دراز مدت به موتور بدلیل اتصال ناگهانی ولتاژ وارد و باعث کاهش عمر مفید آن می‌شود. ضمناً این شوک در هنگام استارت آسانسور باعث نوسان ناگهانی ولتاژ می‌شود که نه تنها برای آسانسور بلکه برای سایر وسایل برقی مضر است. هر چند از این آسانسورها دیگر نصب نمی‌شود اما تعداد قابل توجهی از این آسانسورهای قدیمی در حال کارکردن هستند.

اما برای رفع اشکالات این تابلوهای رله‌ای بتدریج تابلوهای میکروپروسسوری وارد بازار شد. که در آن آی‌سیها و میکروها جایگزین رله ها شدند و با زبانهای مختلف برنامه‌نویسی برنامه‌ریزی می‌شدند تا حجم تابلوها کوچکتر شود و تعمیرات و رفع خرابی آن توسط افراد متخصص‌تر اما با راحتی بیشتری انجام شود.

این نوع تابلو که به تابلوی دوسرعته معروف است تمام ایرادات تابلوهای رله‌ای را جز ابعاد بزرگ و پیچیدگی تابلو داراست. نصب این تابلو همچنان ادامه دارد با اینکه بدلیل تاثیرات مخرب بر ولتاژ و مصرف بالا در برخی شهرهای بزرگ در ایران ممنوع شده‌است. اما در ساختمانهایی که نیاز به پروانه پایان کار ندارند و یا در تعمیرات آسانسورهای قدیمی همچنان به دلیل قیمت پایین تر آن نسبت به تابلوهای جدید پیشنهاد می‌شود. با پیشرفت الکترونیک صنعتی و ارزان‌تر شدن اینورترها استفاده از آن‌ها در تابلوهای فرمان آسانسور رایج شده است و کم کم جایگزین سیستم‌های کنتاکتوری می‌شوند. کاهش تکان ها در هنگام تغییر سرعت و افزایش ضریب توان به دلیل اتصال با واسطه از طریق بانک خازنی اینورتر از مزایای تابلوهای فرمان اینورتری است که به تابلوهای درایودار شناخته می شوند. آسانسور کلمه ای فرانسوی میباشد.
ساعت : 10:38 pm | نویسنده : admin | مطلب بعدی
آسانسور | next page | next page